Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations.

نویسندگان

  • Vittoria Colizza
  • Alessandro Vespignani
چکیده

The spatial structure of populations is a key element in the understanding of the large-scale spreading of epidemics. Motivated by the recent empirical evidence on the heterogeneous properties of transportation and commuting patterns among urban areas, we present a thorough analysis of the behavior of infectious diseases in metapopulation models characterized by heterogeneous connectivity and mobility patterns. We derive the basic reaction-diffusion equations describing the metapopulation system at the mechanistic level and derive an early stage dynamics approximation for the subpopulation invasion dynamics. The analytical description uses a homogeneous assumption on degree block variables that allows us to take into account arbitrary degree distribution of the metapopulation network. We show that along with the usual single population epidemic threshold the metapopulation network exhibits a global threshold for the subpopulation invasion. We find an explicit analytic expression for the invasion threshold that determines the minimum number of individuals traveling among subpopulations in order to have the infection of a macroscopic number of subpopulations. The invasion threshold is a function of factors such as the basic reproductive number, the infectious period and the mobility process and it is found to decrease for increasing network heterogeneity. We provide extensive mechanistic numerical Monte Carlo simulations that recover the analytical finding in a wide range of metapopulation network connectivity patterns. The results can be useful in the understanding of recent data driven computational approaches to disease spreading in large transportation networks and the effect of containment measures such as travel restrictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of city-size heterogeneity on epidemic spreading in a metapopulation: A reaction-diffusion approach

We review and introduce a generalized reaction-diffusion approach to epidemic spreading in a metapopulation modeled as a complex network. The metapopulation consists of susceptible and infected individuals that are grouped in subpopulations symbolising cities and villages that are coupled by human travel in a transportation network. By analytic methods and numerical simulations we calculate the...

متن کامل

Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models

BACKGROUND In recent years large-scale computational models for the realistic simulation of epidemic outbreaks have been used with increased frequency. Methodologies adapt to the scale of interest and range from very detailed agent-based models to spatially-structured metapopulation models. One major issue thus concerns to what extent the geotemporal spreading pattern found by different modelin...

متن کامل

Strategy to suppress epidemic explosion in heterogeneous metapopulation networks.

We propose an efficient strategy to suppress epidemic explosion in heterogeneous metapopulation networks, wherein each node represents a subpopulation with any number of individuals and is assigned a curing rate that is proportional to kα with the node degree k and an adjustable parameter α. We perform stochastic simulations of the dynamical reaction-diffusion processes associated with the susc...

متن کامل

Invasion threshold in heterogeneous metapopulation networks.

We study the dynamics of epidemic and reaction-diffusion processes in metapopulation models with heterogeneous connectivity patterns. In susceptible-infected-removed-like processes, along with the standard local epidemic threshold, the system exhibits a global invasion threshold. We provide an explicit expression of the threshold that sets a critical value of the diffusion/mobility rate below, ...

متن کامل

Impact of commuting on disease persistence in heterogeneous metapopulations

We use a stochastic metapopulation model to study the combined effects of seasonality and spatial heterogeneity on disease persistence. We find a pronounced effect of enhanced persistence associated with strong heterogeneity, intermediate coupling strength and moderate seasonal forcing. Analytic calculations show that this effect is not related with the phase lag between epidemic bursts in diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 251 3  شماره 

صفحات  -

تاریخ انتشار 2008